
A Post Quantum FHE Blockchain with high

throughput

Mike Mu
PQC Labs

January 18, 2024

Abstract

We propose a post-quantum blockchain fortified with lattice-based cryptogra-
phy. The digital signature algorithm employed ensures security against the
mounting threats posed by quantum computing. Its encryption algorithm is
harnessed for the construction of decentralized fully homomorphic encryption
(FHE) computation across the network. This empowers blockchain nodes to
correctly process transactions in their encrypted form, without the knowledge
of their plaintext content, the exclusive decryption privileges is reserved solely
for individual asset holders, granting them access to their transaction details
in plaintext. We also propose an optimized Byzantine Fault Tolerance con-
sensus protocol, showcasing the system’s potential to achieve a throughput of
30,000 transactions per second. We also propose a FHE native virtual ma-
chine (VM) that is designed to support major FHE operations such as addition,
subtraction, comparison, and key switching. This intrinsic feature empowers
users to develop arbitrary computation logic, facilitating the execution of com-
putations on encrypted data. This VM not only promotes the composability
of transactions but also upholds the fundamental tenets of confidentiality, de-
centralization, and anti-censorship measures within the blockchain ecosystem.
Our approach to compliance is twofold: individual asset holders may undergo
potential scrutiny of their transaction history in plaintext, while simultaneously,
at the network level, a governing entity preserves an encrypted repository of the
overall transaction history. The governing entity possesses the decryption key,
enabling the unveiling of transaction details as required. This dual-tiered strat-
egy ensures a nuanced and comprehensive adherence to compliance measures
within our system.

Keywords: Post Quantum Blockchain; Lattice Based Cryptography; FHE;
Scalable BFT; Privacy; Compliance

1

Contents

1 Cryptography and Quantum Computing 4
1.1 Quantum computer breaks ECC 4
1.2 Cryptocurrency May Be Broken Now 5
1.3 Post Quantum Cryptography . 5
1.4 Lattice Cryptography . 6
1.5 Intro to PQC . 6

1.5.1 Lattice DSA . 6
1.5.2 Lattice KEM . 7
1.5.3 FHE . 8

1.6 A Math Primer of Lattice, SVP, CVP 10

2 High Throughput Blockchain 14
2.1 Blockchain is Slow, Low Throughput 14
2.2 High Speed, High Throughput Blockchain 15

2.2.1 Network Assumptions . 15
2.2.2 MIR BFT Consensus Protocol 16

3 FHE Virtual Machine 18
3.1 FHEVM . 18
3.2 FHEVM vs ZKVM . 19
3.3 FHEVM Design . 21

4 Transaction Privacy 23
4.1 The Problem of Pseudo Anonymity 23
4.2 Compliance . 24
4.3 Our Approach to Privacy . 25

5 Blockchain Design Considerations 26
5.1 Block Reward . 26
5.2 Transaction fee . 26
5.3 Storage model . 27

2

6 ecosystem 28

7 Mathematics and Algorithms 30
7.1 Lattice based DSA, Dilithium 30

7.1.1 Security Analysis . 35
7.2 Lattice based KEM, Kyber . 35

7.2.1 Module LWE . 35
7.2.2 Kyber explained . 36
7.2.3 KYBER Full Algorithm 37

7.3 FHE . 39
7.3.1 LWE . 39
7.3.2 Encryption Decryption with LWE 39
7.3.3 Circular Security . 40
7.3.4 Public Key Encryption . 42
7.3.5 Bootstrapping FHE . 43
7.3.6 FHE Summary . 44

3

Chapter 1

Cryptography and Quantum Computing

1.1 Quantum computer breaks ECC

Quantum computers pose a serious threat to modern public key cryptography
that almost all today’s blockchains depend upon, as they can break the hard-
ness of widely-used algorithms such as RSA, Elgamal, and ECC. These three
cryptosystems are each based on a different hard problem - large integer fac-
torization, the Discrete Logarithm Problem, and the Elliptical Curve Discrete
Logarithm Problem, respectively - but are all susceptible to quantum attacks.

It’s worth noting that the threat of quantum attacks on these algorithms is
not just theoretical - Table 1.1 shows a large enough quantum computer would
take low polynomial time to break RSA and ECC, rendering these widely-used
systems insecure. As the development of quantum computers continues to ad-
vance, it’s becoming increasingly urgent to find new cryptographic methods that
can resist quantum attacks and ensure the continued security of cryptography
transactions.

Table 1.1: PKI Classical vs Quantum Computing

Problem Classical Steps Key Size in bits Quantum Steps

IFP ≈ 10
3
√

log(PQ) 3072 to 4096 ≈ O((log(PQ)2)loglog(PQ)logloglog(PQ))

DLP ≈ 10
3
√

log(P) 3072 to 4096 ≈ O((log(P)2)loglog2(P)logloglog(P))
ECDLP ≈ sqrtP 256 to 384 ≈ O((log(P)2)loglog(P)logloglog(P))

CVP ≈ CDL 2000 to 4000 ≈ CDL

4

The exponential rate of progress in developing large quantum computers poses a
significant threat to the security of ECC-based cryptocurrencies such as Bitcoin
and Ethereum. While the development of large quantum computers is still an
engineering challenge, it’s uncertain whether these cryptocurrencies will be able
to withstand the 20 years of quantum computer development ahead.

1.2 Cryptocurrency May Be Broken Now

Bitcoin, Ethereum, and many of their variants have reduced the length of their
public keys (addresses) to 160 bits from the standard 256 bits in ECC, therefore
compromise the security level to 80 bits from ECC’s standard 128 bit. This
makes them vulnerable to attacks by massive classical computers. In fact, this
weakness was likely a factor in the successful recovery of bitcoin by the US De-
partment of Justice in the high-profile ransomware attack on Colonial Pipeline
in 2021.

1.3 Post Quantum Cryptography

As quantum computing continues to advance at an unprecedented rate, the
need for post-quantum cryptography has become increasingly urgent. The se-
curity of many widely-used cryptographic systems, such as RSA and ECC, will
be severely compromised once a large-scale quantum computer becomes a real-
ity. Post-quantum cryptography offers a solution to this looming threat, using
mathematical problems that are believed to be resistant to quantum attacks.
As we cannot predict when a large-scale quantum computer will be developed,
it is essential that we start preparing now and transition to post-quantum cryp-
tographic systems to ensure the security of our digital infrastructure for years
to come.

As history has shown us, even cryptography that was once thought to be un-
breakable can be eventually compromised. ECC’s security is already at risk
due to the rapid development of quantum computing, and its vulnerability to
future attacks is not a matter of if, but when. As such, it is important to take
proactive measures to prepare for a potential future breach. The process of
migrating away from ECC-based systems is not a trivial one, as it involves not
only replacing the ECC for transaction authentication, but also migrating many
of the other building blocks that rely on ECC or ECC-based bilinear mapping,
such as ZKP, ZKVM, and ZKEVM. Therefore, the sooner we begin to prepare
for this eventuality, the smoother and less painful the transition will be.

5

1.4 Lattice Cryptography

Lattice-based cryptography is a highly promising method for achieving quantum-
resistant cryptography, with the security of such schemes stemming from the
complexity of solving the shortest or closest vector problems in high-dimensional
integer lattice systems. This security concept has both theoretical grounding
and practical applications, with the National Institute of Standards and Tech-
nology (NIST) actively developing standards for post-quantum cryptography,
of which lattice-based methods are one of the leading candidates. It is notewor-
thy that lattice-based cryptography has already demonstrated its potential for
security, indicating its practical utility as a viable cryptographic method in the
near future.

For this paper, we will use lattice-based cryptography for post-quantum digital
signature schemes and to construct zero knowledge transactions. Specifically,
we will employ CRYSTAL-DILITHIUM for PQDSA, as it offers a high level of
security, speed, and compact signature size. We will use the same scheme to
construct zero knowledge transactions, which will allow us to mask the clear text
transactions while still being able to prove their correctness. This combination of
security, efficiency, and privacy makes lattice-based cryptography a compelling
choice for post-quantum cryptographic applications.

1.5 Intro to PQC

Given the NP hardness of SVP, CVP problems for quantum computers, we will
use PQC Digital Signature Algorithm (for transaction authentication) to replace
the ECDSA or EDDSA, The core idea is to construct a large random integer
lattice A of dimension n × n as part of the public key, a n-dimension vector s
as the secret key, and a n-dimension vector e as the noise term, we use them to
sign a message that everybody can verify but nobody can forge the signature.

1.5.1 Lattice DSA

We present a high level overview how PQC DSA works.

1. Parameter Selection Fix a lattice dimension parameter N and normal
bound k

2. Secret Lattice Creation Alice choose a small polynomial f ∈ R[1] that
determines her secret lattice

3. Random Polynomial Selection Alice chooses a random polynomial y ∈ R[k]

6

4. Hash Function A hash function is applied to certain quantities associated
to f and y. The output from the hash function is a polynomial c ∈ R[1]
that depends randomly on the inputs.

5. Signature Creation Alice computes the polynomial

s = f ∗ c + y in the ring R (1.1)

6. Rejection Sampling: If
||s||∞ ≥ k −N (1.2)

then Alice goes back to step 3 and selects a new value for y.

7. Publication Alice publishes the pair of polynomials (s, c) as her signatures.
(s1, c1), (s2, c2), (s3, c3),... Now this transcript reveals no information
about Alice’s private key f.

1.5.2 Lattice KEM

We present a high level overview how PQC encryption works.

1. Key generation Alice will generate a random matrix A, a secret key s, and
a noise vector (error term) e, both s and e have small coefficients, and
compute:

As + e = t

Alice publish (A, t) as her public key, and keep s as her private key.

2. Encryption Bob will use Alice’s public key to encrypt a message to Alice:
First, Bob generates a random vector r. Next, Bob use the r to multiply
A and t (Alice’s public key):

(r1, r2) = r ×A× t

Next, Bob adds two small error terms to r1, r2:

(e1 + r1, e2 + r2)

Next, Bob add his message m to the 2 terms:

(e1 + r1 + 0, e2 + r2 + m)

And send the resulting (u,v) to Alice:

(u, v) = (e1 + r1 + 0, e2 + r2 + m)

7

3. Decryption Alice use her private key s to decrypt (u, v) to obtain the
message m:

m = v − u× s− et

Other parties has no ability to cancel the small error et due to the hardness
of SVP, CVP problems, even with a quantum computer. We will utilize the
KYBER to encrypt the transactions on the blockchain to achieve privacy.

1.5.3 FHE

Fully Homomorphic Encryption (FHE) stands as a pinnacle achievement in the
field of cryptography, revolutionizing the landscape by allowing computations on
encrypted data without the need for decryption. At its core, FHE is character-
ized by its ability to support a rich set of algebraic operations while maintaining
the confidentiality of the underlying data.

The fundamental principle behind FHE lies in the mathematical framework of
lattice-based cryptography. In this context, a lattice serves as a grid-like struc-
ture within a mathematical space, and the hardness of certain lattice problems
forms the foundation of the encryption’s security. FHE schemes typically lever-
age mathematical structures like ideal lattices, which involve polynomial rings
and their quotient rings.

In the context of blockchain, FHE enables the delegation of computations on
encrypted data to a blockchain node, which performs the necessary operations
without ever decrypting the data. The encryption process involves encapsulating
data in a form that allows mathematical operations to be conducted directly on
the ciphertext. This includes operations such as addition, multiplication, and
other complex computations.

One of the critical components in FHE is the incorporation of noise into the
encrypted data. Noise acts as a safeguard against information leakage during
computation. Managing and mitigating noise buildup is an ongoing challenge
in FHE design, impacting both the efficiency and security of the scheme.

Bootstrapping is a fundamental technique in Fully Homomorphic Encryption
(FHE) systems, designed to address a critical challenge known as ”noise” accu-
mulation during computation. Noise, in the context of FHE, is the unintended
distortion or corruption introduced to the encrypted data as a result of homo-
morphic operations. Over successive computations, this noise can accumulate
and eventually compromise the correctness of the results.

The bootstrapping technique is employed to rejuvenate the ciphertext, effec-

8

tively reducing the noise to an acceptable level and allowing for continued,
error-free computation. The term ”bootstrapping” draws an analogy from the
concept of pulling oneself up by the bootstraps, as the technique essentially
enables the encryption scheme to refresh its own state.

The process involves taking an encrypted ciphertext, which may have accumu-
lated excessive noise, and applying a special homomorphic operation known as
the ”bootstrap circuit” or ”bootstrapping gate.” This operation effectively per-
forms a decryption followed by re-encryption homomorphically, reducing the
noise while preserving the correctness of the underlying plaintext.

Here is a simplified overview of the bootstrapping process:

Encrypted Data with Noise: Start with an encrypted ciphertext that has un-
dergone multiple homomorphic operations, accumulating noise.

Bootstrap Circuit: Apply the bootstrapping gate or circuit, which performs
a homomorphic decryption followed by a homomorphic re-encryption on the
ciphertext. This operation reduces the noise while maintaining the encrypted
state.

Result: The output is a refreshed ciphertext with reduced noise, ready for fur-
ther homomorphic operations without compromising the correctness of the com-
putation.

Note that bootstrapping comes with a computational cost. The process is inher-
ently more resource-intensive than standard homomorphic operations, and its
frequency depends on the specific FHE scheme and the desired level of security
and correctness. Efficient implementation of bootstrapping is a key focus in
FHE research, as it directly influences the practicality and performance of FHE
in real-world applications. Advances in bootstrapping techniques contribute
significantly to the ongoing progress of FHE as a viable solution for secure and
privacy-preserving computations.

Moreover, FHE operates in a multi-layered fashion. Initially, a user encrypts
their data with a public key, and the ciphertext is then sent to the node. The
node performs the computations on the encrypted data, yielding a result that
remains encrypted. Finally, the user, holding the corresponding private key,
decrypts the result to obtain the final outcome.

9

While FHE’s theoretical foundations are firmly rooted in advanced mathemat-
ical concepts, its practical implications are profound. FHE opens avenues for
secure and privacy-preserving computations in cloud computing, secure data
outsourcing, and collaborative machine learning, among other applications. As
cryptographic research continues to advance, FHE remains a focal point, contin-
ually evolving to strike an intricate balance between mathematical complexity,
practical efficiency, and robust security.

1.6 A Math Primer of Lattice, SVP, CVP

In this section we give a brief introduction to the problem of finding the shortest
and closest vector from a lattice, and there is no quantum algorithm to solve it
in polynomial time.

1. SVP, CVP - NP Hard Problem for Quantum Computer

SVP Problem Let L ∈ Rn be a lattice, the shortest vector problem is
to find a shortest non zero vector in L, that is, to find a vector v0 in L,
satisfying:

||v0|| = min
v∈ L
||(v)||, v ̸= 0

CVP Problem let L ∈ Rn be a lattice, the closest vector problem is the
problem of finding, for a given target vector t ∈ Rn, a vector in L that is
closest to t, in other words The CVP for L with target vector t is to find
a vector v0 in L, such that:

||v0 − t|| = min
v∈ L
||v − t||

2. Babai’s algorithm to solve CVP Input:

A lattice L ∈ Rn A basis
β =

[
v1, ...vn

]
A target vector t ∈ Rn

Compute: α1, ...αn ∈ R so that t = α1v1 + ... + αnvn v0 ← ⌊α1⌉ v1 +
... ⌊αn⌋ vn

10

Output: v0

Babai’s algorithm only works reasonably well with a ”good” basis - orthog-
onal basis of vectors

[
v1, ...vn

]
. For a ”bad” basis - ”highly non orthogonal

basis” it will end up finding a vector outside the lattice. As the dimensions
increase, the failure of a bad basis to solve CVP increases exponentially.

3. Gran-Schmidt Algorithm

v∗1 ← v1, v
∗
k ← vk −

k−1∑
i=1

vk · v∗i
||v∗i ||2

.v∗i (1.3)

v∗k ← projection of vk on to Span(v1, v2, ..., vk−1)⊥

Gran-Schmidt algorithm only works well with non-integer lattice, but in
our realm the elements are large integers, we must round result to the
nearest integers, which will lose ”accuracy” in the process, therefore not
being able to find the shortest and closest integers.

4. Lattice reduction

Now we introduce Gran-Schmidt Algorithm with Rounding

Size Condition

An ordered basis v1, ...vn for L satisfies Size Condition if the output from
Gram-Schmidt Algorithm satisfies:

|viv∗j |
||v∗j ||2

≤ 1

2
for all 1 ≤ j ≤ i ≤ n (1.4)

Lovasz Condition

An ordered basis v1, ..., vn for L satisfies Lovasz Condition, if the output
from Gram-Schmidt Algorithm satisfies:

11

(||v∗i+1||)2 ≥
(

3

4
− (|vi+1 · v∗i |)2

||v∗i ||4

)
||v∗i ||2 (1.5)

5. LLL Algorithm

Algorithm 1 LLL Algorithm

1: Input a basis [v1, ...vn] for a : lattice L
2: k ← 2
3: while k ≤ N do
4: for j = k − 1, k − 2, ...1 do
5: v∗1 , ...v

∗
k ← v1, ...vk ▷ Gram-Schmidt

6: µk,j ← (vk · v∗j)/||v∗j ||2
7: vk ← vk − ⌊µk,j⌉ vj ▷ Size Reduction
8: end for
9: v∗1 , ...v

∗
k ← v1, ...vk ▷ Gram-Schmidt

10: µk,k−1 ← (vk · v∗k−1)/||v∗k−1||2

11: if ||v∗k||2 ≥
(

3
4 − µ2

k,k−1

)
||v∗k−1||2 then ▷ Lovasz Condition

12: k ← k − 1
13: else
14: Swap vk−1 and vk
15: Set k ← max(k − 1, 2)
16: end if
17: end while
18: Output: The LLL reduced basis [v1, ...vn]

6. LLL-BKZ algorithm with block size β

Rather than swapping vk and vk−1 in step 14 of LLL Algorithm 1, we
instead take the sub lattice spanned by a block of vectors vi, vi+1, vi+β−1

and replace these vectors with a KZ reduced basis for the sub lattice. The
LLL-BKZ algorithm terminates in no more than O(βαβnb) steps for some
small constants a, b and find a non-zero vector v ∈ L, satisfying:

||v|| ≤
(

β

πe

)n−1
β−1

λ1(L) (1.6)

7. Learn with errors

12

Most lattice-based cryptographic algorithms rely on hiding one or more
small vectors in a lattice. What this means is that the lattice L has a non-
zero vector v whose length ||v|| is significantly smaller than the shortest
non-zero length predicted by the Gaussian heuristic.

λ1(L) := min0 ̸= v ∈ L(||v||) (1.7)

γ(L) :=

√
n

2πe
·
(
Det(L)

1
n

)
wheren λ1(L) ≤ n

−1
2 γ(L) (1.8)

If λ1(L) is polynomially smaller than γ(L), then it takes exponential time
to solve SVP or CVP.

The CVP is known to be NP-hard, and the SVP is NP-hard under a
randomized reduction hypothesis, combined with ”learn with error”, they
form NP hard problem for quantum computers. The best lattice reduc-
tion methods LLL-BKZ requires exponential time to the dimension N for
quantum computers to find very short or close vectors with the noise of
small errors. This makes SVP and CVP good candidates for post quantum
cryptography.

13

Chapter 2

High Throughput Blockchain

2.1 Blockchain is Slow, Low Throughput

The current state of the blockchain exhibits slow speed and low throughput.

The penalty of decentralization: Decentralization refers to the distribution
of decision-making power among nodes in a network, which is a key feature
of blockchain and other decentralized systems. However, this can come at a
cost in terms of efficiency and speed. In a centralized system, decisions can be
made quickly and efficiently by a single entity, but in a decentralized system,
decision-making must be distributed among nodes, which can lead to slower
decision-making and increased complexity.

Fault tolerance with malicious participants: One of the key benefits of
a decentralized system is its ability to resist attacks by malicious participants,
but this comes at the cost of increased complexity and slower decision-making.
In a decentralized system, multiple nodes must agree on a decision, which can
take longer and require more communication than in a centralized system.

POS is constrained to be below 5,000 transaction per second (TPS),
often between 1,000-2,000 TPS in practice. Nodes need to communicate for
reaching consensus: In a decentralized system, nodes must communicate with
each other in order to reach consensus on a decision. This can lead to delays
and increased network traffic, especially when there are many nodes involved in
the network.

14

One leader at a time to propose a block, slow and bandwidth con-
sumption: Most blockchain systems use a leader-based consensus algorithm,
where on each round, a single node is responsible for proposing a new block.
This can be slow and inefficient, especially when there are many nodes in the
network, as the leader node must communicate with all other nodes in order to
reach consensus.

None leader nodes need 2 rounds of communications: prepare and com-
mit, to achieve consensus: In a leader-based consensus algorithm, non-leader
nodes must communicate with each other in order to reach consensus on a de-
cision. This can require at least two rounds of communication, which can be
slow and inefficient, especially when there are many nodes in the network.

2.2 High Speed, High Throughput Blockchain

We strive to develop a high speed, high throughput blockchain by 2 major
techniques.

One technique is to introduce parallel processing, where multiple leaders can
propose multiple new blocks in parallel.

For example, in a sharded blockchain system, different shards can have their
own leaders who propose new blocks simultaneously. This increases the overall
TPS of the system as a whole. Additionally, using consensus algorithms that
allow for parallel processing, such as MIR-BFT that we will introduce below,
will also significantly increase the throughput of the system.

Another way to improve the efficiency of consensus in decentralized systems
is by using mathematical proofs of correctness for transactions. This involves
using mathematical algorithms and protocols, such as zero-knowledge proofs or
zk-SNARKs, to prove that a transaction is valid without having to re-execute
it.

With this approach, non-leader nodes don’t need to re-execute each transac-
tion, but instead they just verify the proof and update the state of the chain.
This reduces the overall computational load on the system and speeds up the
consensus process, and increases the transaction privacy and security.

2.2.1 Network Assumptions

MIR BFT is the work of IBM researchers in Europe. In a nutshell, MIR BFT is a
parallel Byzantine Fault Tolerance protocol. It works under such consumptions:

15

1. Byzantine Fault Assumption: - N nodes, where F nodes may be Byzantine
Faulty (malicious) - Any number of clients can be Byzantine Faulty

2. Asynchronous networks: - Messages may be dropped, delayed, re-ordered;
- The network will reach synchronous state for a while, after some time;

2.2.2 MIR BFT Consensus Protocol

1. In a classical BFT protocol, a block is made in 3 steps: Step 1, a leader
node propose a block by sending it to all other nodes; Step 2, each node
who receive the proposal will communicate with other nodes, then pre-
commit the block; Step 3, each node will check one more round with
other nodes on the pre-committed block, and commit it if less than 1/3
of the nodes have divergence. The most time consuming and bandwidth
consuming operation is on step 1, a leader can only propose a block at a
time, wait for its finality, then the next leader can propose another block,
wait for its finality. As of step 2 and 3, because each node is at the load
balance state, their communication cost is low to moderate, and linear to
the size of the transactions in the block.

2. MIR BFT eliminate the bottleneck by enabling multiple leaders to propose
their respective blocks in parallel, imagine at time t, we have: node 1
propose block 1 containing unique set of transactions; node 2 propose
block 2 containing unique set of transactions; node 3 propose block 3 ...;
node 4 propose block 4 ...; At time t1: node 1 propose block 5; node 2
propose block 6; node 3 propose block 7; node 4 propose block 8; ...

In mathematical term, for block number n, node i should produce it if:

(n− i) mod (k · i) = 0

where k is an integer constant that determines the interval between blocks
produced by each node. In the above example, k = 4, so node 1 produces
blocks 1, 5, 9, 13, node 2 produces blocks 2, 6, 10, 14, and node 3 produces
blocks 3, 7, 11, 15.

3. Prevent duplicate transactions (or double spending). To prevent the hack
that the client can send multiple copies of the same transactions to dif-
ferent nodes for them to include in their respective proposed blocks, MIR
BFT constructs a transaction sharding scheme that hash each transaction
into a bucket, a particular node will be only assigned to pick a particu-
lar bucket number into a block. This way, in a certain time epoch, all
duplicate transactions will always be hashed into one bucket, say bucket

16

number 1, that can be only picked by node 1, when node 1 sees multiple
identical transactions it will only include one unique transaction into the
proposed block.

4. To prevent message censorship, for example, node 1 doesn’t like a par-
ticular transaction or client so it will always drop it, MIR BFT rotate
the bucket assignment periodically, at time epoch t, bucket 1, 5, 9, 13 is
assigned to node 1, at epoch t+1, bucket 1, 5, 9, 13 will be assigned to a
different node, such as node 3, this way each nodes receives transactions
from nearly randomized clients, and it has no way to censor any particular
client.

5. MIR BFT further suggests two more optimizations to increase the trans-
action throughput. First is the Light Total Order Broadcast that only
broadcast the transaction hash - the transaction digest to ALL correct
nodes, and only broadcast the full transaction payload to ONE correct
node, to cut the communication cost. Second is called Signature Verifica-
tion Sharding, to let only one correct node verify the transaction signature
as opposed all nodes verifying.

6. MIR BFT is a generalization of PBFT/Avardvark, it only changes the
leader election part of PBFT, so it is easy to verify its correctness. It is
also very fault tolerant in the sense that the leader set can grow in stable
epoch time, and shrink in recovery epoch time.

MIR BFT researchers claim a transaction throughput of 60,000 Bitcoin type
of transactions, where each transaction size is about 500 Bytes, and 30,000
Hyperledger type of transactions where each size is about 3,500 Bytes when
running a 100 nodes network on AWS WAN, each with 1 GBPS bandwidth and
32GB RAM, 2.0Ghz CPU. As we employ the PQC primitives our signature size
will be comparable with Hyperleger’s signature size of 3.5K Bytes, since FHE
and its bootstrapping builds up computational complexity, we expect 10,000
TPS as a starting point, and further optimize the transaction data, block data
structure, hardware, bandwidth, and potentially adopt ZKP technique to in-
crease the transaction throughput. Eventually we expect to reach a transaction
throughput of 30,000 TPS.

17

Chapter 3

FHE Virtual Machine

3.1 FHEVM

We plan to introduce a virtual machine for the blockchain. A virtual machine
is a crucial component for blockchain programmability, as it allows for the ex-
ecution of smart contracts in a sandboxed environment. Smart contracts are
self-executing programs that can be programmed to execute automatically when
certain conditions are met. These programs can be used for a variety of pur-
poses, from creating decentralized applications (DApps) to transacting digital
assets. Since it is a FHE blockchain, we need a VM that can perform native
FHE operations.

In our ambitious endeavour to develop an FHE Virtual Machine (FHE VM), we
embark on a unique convergence of fully homomorphic encryption (FHE) and
microprocessor architecture. Unlike conventional virtual machines, the FHE
VM demands a distinctive re-implementation of fundamental operators such as
addition (+), subtraction (-), greater than (¿) and smaller than (¡), and the
manipulation of word sizes. This specialized FHE VM is designed to facilitate
arbitrary computations on encrypted data, reflecting a novel synergy between
cryptographic intricacies and microprocessor-level functionality.

The challenge lies in adapting traditional arithmetic and logic operations to op-
erate homomorphically, considering the inherent constraints and complexities of
FHE schemes. Each operation necessitates meticulous transformation and inte-
gration to ensure compatibility with the homomorphic nature of the encrypted
data. Moreover, the FHE VM’s design necessitates an acute understanding of

18

the underlying lattice-based cryptography and the associated trade-offs in terms
of security, computation efficiency, and noise management.

As a pioneering effort at the intersection of FHE research and microprocessor
architecture, the FHE VM aims not only to re-implement basic operators but
to optimize their performance within the context of homomorphic computation.
This venture requires careful consideration of circuit design, gate complexity,
and computational overhead. Ultimately, the FHE VM aspires to be a corner-
stone in advancing secure and privacy-preserving computations, bridging the
realms of cryptography and microprocessor architecture in a symbiotic fusion
of innovation.

3.2 FHEVM vs ZKVM

In recent years, Zero-Knowledge Proofs (ZKP) have emerged as a prominent and
groundbreaking advancement in cryptography, revolutionizing privacy-preserving
computations across various domains. The robustness of ZKP, particularly in
the realm of verifiable computation and confidentiality, has garnered consider-
able attention and utilization. However, amidst this cryptographic landscape,
Fully Homomorphic Encryption (FHE) stands as an even more cutting-edge
paradigm, albeit in its nascent stages of development. FHE’s unique capabil-
ity to enable computations on encrypted data without decryption presents a
transformative potential for secure and privacy-preserving operations. While
ZKP has gained popularity for its efficiency and applicability in scenarios re-
quiring knowledge proofs, the distinctive and powerful properties of FHE may
well position it to gain increased recognition and utilization in the future. In
this discourse, we delve into a comparative analysis of these two cutting-edge
cryptographic paradigms, exploring their respective strengths, challenges, and
potential implications for the evolving landscape of secure computation.

Comparing the FHE Virtual Machine (FHE VM) and Zero-Knowledge Virtual
Machine (ZK VM) entails a nuanced evaluation of their strengths and weak-
nesses across various dimensions. Notably, the FHE VM confronts challenges
in implementation complexity, primarily stemming from the intricate nature
of fully homomorphic encryption (FHE) operations. The need for specialized
adaptations of basic operators adds to the complexity, and it’s worth high-
lighting that FHE VM, being a relatively novel concept, lacks prior work for
reference, necessitating groundbreaking efforts. In contrast, the ZK VM land-
scape has witnessed considerable progress, with several established frameworks
available. While ZK VM introduces complexity through sophisticated zero-
knowledge proof protocols, the existing body of work provides a foundation that
can be leveraged, streamlining development efforts and referencing established
methodologies. The distinction lies not only in the nature of complexity but
also in the availability of established frameworks within the respective domains.

19

Computation complexity diverges between the FHE Virtual Machine (FHE VM)
and the Zero-Knowledge Virtual Machine (ZK VM), presenting a nuanced per-
spective. FHE VM grapples with intricacies in design and implementation,
engaging in matrix vector multiplication as its primary computational task.
Despite historically expensive bootstrapping operations, recent advancements,
particularly with Torus FHE, have significantly enhanced the efficiency of this
process. In contrast, ZK VM, initially perceived as having a lower computa-
tional burden when focusing on proving knowledge, has witnessed a shift. Recent
ZK proof constructions, like Groth16 and Plonk, extend beyond mere knowl-
edge proofs to verify the correctness of arbitrary computations. This involves
the evaluation of high-degree polynomials with large scalar coefficients and cir-
cuit satisfiability, resulting in prolonged proof generation times and substantial
computational resource requirements. While FHE VM encounters design com-
plexities, its computational demands appear to be more favorable, potentially
one or two orders of magnitude less than the evolving demands of ZK VM,
particularly with recent advancements in homomorphic encryption techniques.

The speed of operations between the FHE Virtual Machine (FHE VM) and
the Zero-Knowledge Virtual Machine (ZK VM) reflects a nuanced interplay of
computational demands. Contrary to the conventional perspective, FHE VM
showcases noteworthy speed advantages attributed to its foundational opera-
tions, particularly matrix vector multiplication and efficient low modulus com-
putation. In contrast, ZK VM, especially with recent zero-knowledge proof
protocols like Groth16, Plonk, or Stark, encounters substantial computational
overhead. These protocols involve the computation of high-degree polynomi-
als with large coefficients, often resulting in prolonged proof generation times,
measured in minutes if not hours. The conventional notion that FHE VM lags
in computational speed, especially with larger and more complex computations,
undergoes reconsideration when accounting for the nature of operations involved
in both cryptographic paradigms.

In terms of ease of programmability, the FHE Virtual Machine (FHE VM) holds
a notable advantage over its counterpart, the Zero-Knowledge Virtual Machine
(ZK VM). FHE VM, despite its demand for a specialized understanding of
FHE-specific operators, provides an intuitive programming experience akin to
standard computations, even with the encryption of data. This inherent sim-
plicity arises from the fact that, unlike ZK VM, FHE operations do not require
developers to navigate intricate processes such as witness computation, prover
circuit design, or the management of a trusted setup. While both VMs present
challenges, FHE VM’s user-friendly approach enhances its appeal, offering a
more straightforward and accessible programming paradigm.

The size of computation payload may favor ZK VM, as zero-knowledge proofs
can succinctly represent the validity of a computation without revealing its

20

details. FHE VM, dealing with encrypted data, may incur a larger payload due
to the necessity of carrying additional encryption metadata.

Integratability with current VMs is a nuanced aspect. Adapting existing VMs,
like LLVM to ZK VM or WASM to ZKWASM, aligns with the modular nature
of zero-knowledge proof systems. FHE VM integration, however, poses a more
significant challenge due to the unique requirements of homomorphic encryption
and potential impacts on existing execution models.

In conclusion, the choice between FHE VM and ZK VM depends on the specific
use case, balancing considerations of computational complexity, speed, ease of
programmability, payload size, and integratability. Both VMs represent cutting-
edge advancements in privacy-preserving computation, each with its own set of
trade-offs and applications within the evolving landscape of secure computation.

3.3 FHEVM Design

A fully homomorphic encryption (FHE) virtual machine is a virtual machine
that is optimized for performing FHE operations such as addition, subtraction,
multiplication, division, modulus, equality, inequality etc.

As the time of this paper, there isn’t any recognized and established VM de-
signed specifically to execute FHE operations. It is on us to perform this ground-
breaking research and development.

A Fully Homomorphic Encryption (FHE) virtual machine represents a ground-
breaking endeavor tailored for the seamless execution of FHE operations, en-
compassing fundamental arithmetic computations like addition, subtraction,
multiplication, division, modulus operations, as well as more complex logical
operations such as equality and inequality checks.

The design and development of an FHE virtual machine entail confronting sev-
eral intricate challenges that underscore the pioneering nature of this research
initiative. Firstly, FHE operations involve intricate algebraic computations on
encrypted data, introducing challenges related to computational intensity and
efficiency. Given the nature of homomorphic encryption, achieving optimal per-
formance in terms of execution speed and resource utilization becomes a delicate
balancing act, necessitating innovative algorithms and optimizations.

Furthermore, the lack of a recognized and established VM specifically tailored
for FHE operations at the time of this paper introduces a considerable void in

21

the existing cryptographic landscape. As such, the onus falls upon us to pio-
neer this area, addressing the dearth of dedicated virtual machines optimized
for FHE computations. This requires the development of novel algorithms and
methodologies that can efficiently perform homomorphic operations while mit-
igating computational overhead.

One of the significant challenges lies in the selection of appropriate crypto-
graphic primitives and protocols that can seamlessly integrate with the virtual
machine architecture. The need for a well-designed interface between the FHE
virtual machine and the underlying cryptographic mechanisms poses a challenge,
demanding a nuanced understanding of cryptographic protocols and their inter-
actions with virtual machine architectures.

In terms of existing frameworks, the landscape is relatively uncharted as of now.
Leveraging existing virtual machine frameworks for general-purpose computa-
tions might not be directly applicable to the specialized requirements of FHE
operations. This underscores the necessity for a dedicated framework that aligns
with the unique characteristics and computational demands of fully homomor-
phic encryption.

In summary, the development of an FHE virtual machine necessitates over-
coming challenges related to computational efficiency, algorithmic innovations,
cryptographic protocol integration, and the absence of established frameworks.
This pioneering initiative requires groundbreaking research to advance the capa-
bilities of FHE computations within a virtualized environment, contributing to
the evolution of privacy-preserving technologies and expanding the possibilities
of secure computation on encrypted data.

22

Chapter 4

Transaction Privacy

4.1 The Problem of Pseudo Anonymity

In the predominant paradigm of blockchain systems, exemplified by notable
instances such as Bitcoin and Ethereum, transactional details are meticulously
documented in an open ledger accessible to all participants within the network.
This transparency extends to the revelation of sender and receiver addresses,
transaction amounts, and timestamps, forming a comprehensive and publicly
available record inscribed indelibly in the blockchain.

However, this ostensible transparency belies a critical caveat: the purported
pseudonymity of transactions does not confer genuine anonymity. Despite the
absence of direct links to real-world identities, the meticulous observer armed
with the capacity to correlate a Bitcoin or Ethereum address to an actual in-
dividual—attainable through exchanges or publicly available data—can poten-
tially unravel the entirety of transactions affiliated with said address. This
inherent lack of privacy in blockchain systems becomes a salient concern, given
the potential ramifications for users, encompassing the compromise of financial
privacy, augmented susceptibility to targeted malfeasance or scams, and other
latent risks.

The burgeoning discourse on privacy within the blockchain space has propelled
the exploration of sophisticated solutions, among which Fully Homomorphic En-
cryption (FHE) emerges as a beacon of promise. Unlike traditional blockchain
setups, where transactional details are unveiled for public scrutiny, FHE intro-
duces an innovative paradigm by enabling computations directly on encrypted

23

data. This transformative approach holds the potential to obfuscate trans-
actional intricacies, shielding users from the prying eyes that seek to unveil
patterns of behavior or derive additional insights into financial activities. The
realm of privacy-preserving technologies, marked by the ascent of FHE, zero-
knowledge proofs and cryptographic innovations, is undergoing a renaissance—a
concerted effort to fortify blockchain ecosystems with the robust cloak of privacy,
safeguarding users against the perils of unwarranted exposure and mitigating
the risks associated with the transparency paradox.

4.2 Compliance

Architecting a privacy-centric blockchain that aligns with regulatory mandates
poses a formidable challenge. Striking a delicate equilibrium between user pri-
vacy and regulatory access to transactional data becomes imperative, as users
seek anonymity and security while regulators necessitate transactional insights
for law enforcement and fiscal oversight.

Our compliance solution introduces an innovative approach through the infusion
of selective transparency into the blockchain’s fabric. This method orchestrates
a nuanced balance, affording specific entities access to designated transactional
information while safeguarding the confidentiality of other data. In practice,
individual account holders willingly provide transactional details. Subsequently,
leveraging the advanced features of Fully Homomorphic Encryption (FHE), we
employ the key switching capability to re-encrypt the entire transaction history.
This re-encryption process creates a distinct ledger, accessible exclusively to a
dedicated governance entity holding the decryption key.

Crucially, both the encryption and decryption keys employed in this process
are threshold keys derived from a threshold cryptography setup, specifically
employing T of N keys from the members constituting the governance entity.
This multi-key arrangement enhances security and decentralization, ensuring
that no single entity holds absolute control over the decryption process.

In essence, this compliance-centric design champions a meticulous harmony be-
tween user privacy and regulatory imperatives. By incorporating a suite of
features, notably leveraging FHE’s advanced cryptographic capabilities, the sys-
tem not only assures user privacy but also enables regulators to monitor specific
transactions, thus fostering a blockchain ecosystem that is both compliant and
privacy-preserving.

24

4.3 Our Approach to Privacy

Our approach to achieving robust privacy within the blockchain ecosystem is
anchored in an advanced system design harnessing cutting-edge cryptographic
techniques, primarily leveraging Fully Homomorphic Encryption (FHE). To es-
tablish a secure and privacy-preserving foundation, each network participant
will first engage in a Distributed Key Generation (DKG) process. This collab-
orative endeavor yields a network encryption and decryption key, collectively
utilized for encrypting transactions before their placement on the blockchain.

Notably, the decentralization of key management is a pivotal aspect of our
design. Each participant exclusively holds a partial decryption key, ensuring
that no individual or coalition of participants less than a predefined threshold
(T) possesses the ability to decrypt transactions. Setting T out of N as a
ratio, representing a significant majority of network participants, for instance,
75%, signifies that only a collaboration exceeding this threshold can collectively
decrypt the transaction history.

Acknowledging the operational challenges associated with garnering an over-
whelming majority for routine decryption tasks, particularly in response to in-
dividual regulator or law enforcement requests, we introduce a separate gover-
nance entity. This entity, comprising fewer members, holds a distinct group key
that encrypts the entire transaction history. When faced with a regulatory re-
quest, the governance entity members employ a voting mechanism to authorize
or deny the revelation anonymously. Upon achieving a quorum, defined by a
predefined agreement threshold, the group members collaboratively decrypt the
specified transactions and provide the necessary details to the relevant author-
ities.

Crucially, on-chain storage of encrypted transactions, inclusive of account bal-
ances and transaction amounts, becomes an integral part of our privacy-centric
design. The encrypted data is then re-encrypted by each network node using
individual user keys. This additional layer ensures that users can decrypt the
transaction data on their end, revealing their account details, including trans-
action history, in plaintext.

In essence, this comprehensive system design, entwining distributed key gener-
ation, threshold cryptography, and strategic governance entities, establishes a
formidable privacy infrastructure within the blockchain. By integrating FHE’s
capabilities, our approach not only fortifies user privacy but also orchestrates
a dynamic balance, empowering the network to respond effectively to regula-
tory and law enforcement requirements without compromising the fundamental
tenets of individual confidentiality and blockchain transparency.

25

Chapter 5

Blockchain Design Considerations

5.1 Block Reward

Block reward is the incentive given to miners for successfully adding a new block
to the blockchain. It will be a combination of newly created cryptocurrency and
transaction fees.

The block reward is a crucial aspect of the blockchain’s monetary policy, as it
directly affects the inflation rate and the total supply of the cryptocurrency.
A higher block reward incentivizes more miners to participate in the network,
increasing the security and decentralization of the blockchain. However, it also
leads to higher inflation and a larger supply of the cryptocurrency, potentially
reducing its value. We will set the block reward to decrease over time in a
predetermined manner.

The specific rate of decay for the block reward depends on various factors, in-
cluding the desired inflation rate, the total supply of the cryptocurrency, and
the network’s security needs. Details will be released in our engineering speci-
fications in a separate document.

5.2 Transaction fee

Transaction fees serve several purposes. First and foremost, they incentivize
miners or validators to include transactions in a block. Without transaction
fees, there would be little motivation for miners to prioritize adding transactions

26

to the blockchain.

Secondly, transaction fees are used to mitigate spam attacks. If there were no
fees, malicious actors could flood the network with an overwhelming number of
transactions, potentially causing congestion and network issues.

Finally, transaction fees can also be used to provide a source of revenue for
the network’s developers or to fund other initiatives related to the network’s
development and maintenance.

The transaction fee will be set to balance the need for incentivizing miners to
include transactions in a block and the desire to keep transaction fees low for
users. We plan to set the initial transaction fee in the range of 0.1% to 0.3% of
per transaction amount, and review and possibly adjust it depending on factors
such as the size of the network, the demand for block space, and the cost of
maintaining the network.

5.3 Storage model

At our blockchain project, we understand the importance of having a storage
model that balances security, speed, throughput, and zero-knowledge friendli-
ness. We are currently exploring several storage model candidates, including
Merkle Patricia Trie (MPT), Merkle Mountain Range (MMR), Radix Tree, Bi-
nary Merkle Tree, Recursive Length Prefix, and others. Each model has its
unique strengths and weaknesses, and we are carefully evaluating them to deter-
mine which one can best meet our project’s requirements. Our goal is to choose
a storage model that can provide high speed and throughput while maintaining
a high level of security and allowing for efficient zero-knowledge proofs. We be-
lieve that by considering all these factors, we can create a blockchain platform
that is truly innovative and efficient.

Based on the criteria of security, speed, throughput, and zero-knowledge friend-
liness, the Merkle Patricia Trie (MPT) and the Merkle Mountain Range (MMR)
stand out as promising storage models. MPT is a tried-and-true storage model
used by Ethereum and offers excellent security and zero-knowledge friendliness,
while MMR offers a novel approach to storing data that allows for efficient
proofs of inclusion and exclusion, making it a strong candidate for high-speed,
high-throughput applications. Both storage models have been extensively re-
searched and implemented in existing blockchains, making them reliable choices
for our consideration.

27

Chapter 6

ecosystem

1. Wallet We plan to develop a browser extension wallet

2. Smart Contract Development Tool We plan to develop a framework to
write, test, compile and deploy smart contracts,

3. Asset creation and trading We plan to program native smart contracts for
users to invoke to create assets, tokens and to swap them on a on-chain
exchange.

4. Group signature We plan to develop a native group signature, threshold
signing ability to enable asset management with multi-signature transac-
tions.

5. dAPP We plan to invite/work with external teams to develop various apps
to enrich our ecosystem.

In summary, PQChain is a quantum-resistant blockchain system developed with
a focus on privacy, compliance, programmability, and speed. Employing lattice-
based cryptography, PQChain not only ensures resistance against quantum
threats but also integrates Fully Homomorphic Encryption (FHE) for enhanced
privacy and regulatory alignment. Emphasizing programmability, the system
aims to cultivate a diverse community and support various applications. Ad-
ditionally, PQChain addresses transactional bottlenecks by prioritizing speed,

28

offering users a scalable and efficient blockchain experience. This research-driven
approach positions PQChain as a significant advancement in blockchain technol-
ogy, with the potential to attract a substantial user base based on its innovative
features and future-proof design.

29

Chapter 7

Mathematics and Algorithms

In this chapter, we delve into the mathematical underpinnings of lattice-based
post-quantum cryptography (PQC) and lattice-based zero-knowledge proofs.
The content is intended for readers seeking a deeper understanding of the math-
ematics behind these concepts and to verify their validity.

7.1 Lattice based DSA, Dilithium

Below is a general implementation of lattice based digital signature algorithm

1. Parameter Selection
Fix a lattice dimension parameter N and normal bound k

2. Secret Lattice Creation
Alice choose a small polynomial f ∈ R[1] that determines her secret lattice

3. Random Polynomial Selection
Alice chooses a random polynomial y ∈ R[k]

4. Hash Function
A hash function is applied to certain quantities associated to f and y.
The output from the hash function is a polynomial c ∈ R[1] that depends
randomly on the inputs.

30

5. Signature Creation
Alice computes the polynomial

s = f ∗ c + y in the ring R (7.1)

6. Rejection Sampling: If
||s||∞ ≥ k −N (7.2)

then Alice goes back to step 3 and selects a new value for y.

7. Publication
Alice publishes the pair of polynomials (s, c) as her signatures.
(s1, c1), (s2, c2), (s3, c3),...

Now this transcript reveals no information about Alice’s private key f.

Below is a simplified and less efficient design of the scheme that is based on the
“Fiat-Shamir with Aborts” approach.

KeyGen

31

Algorithm 2 Simplified Lattice-based DSA

KeyGen

1: A← Rk×l
q

2: (s1, s2)← Sl
n × Sk

n

3: t :− As1 + s2
4: return (pk = (A, t)), (sk = (A, t, s1, s2))

Sign(sk, M)
5: z := ⊥
6: while z := ⊥ do
7: y ← Sl

γ1−1

8: w1 := HighBits(Ay, 2γ2)
9: c ∈ Bt := H(M ||w1)

10: z := y + cs1
11: if ||z|| ≥ γ1 − β or ||LowBits(Ay − cs2, 2γ2)|| −∞ ≥ γ2 − β then
12: z := ⊥
13: end if
14: end while
15: return σ = (z, c)

Verify(pk, M, σ = (z, c))

16: w
′

1 := HighBits(Az − ct, 2γ2)
17: return [||z||∞ ≤ γ1 − β] and [c = H(M ||w′

1)]

We set q = 223 − 213 + 1 and n = 256, All algebraic operations are over the
polynomial ring Rq. First it generates a k × l matrix A each of whose entries
is a polynomial in the ring Rq = Z[X]/(Xn + 1). Then the algorithm samples
random secret key vectors s1 and s2, each coefficient is an element of Rq with
small coefficients of size at most η. The second part of the public key is derived
as t = As1 + s2

Dilithium made several optimizations to the above DSA scheme.

First, it reduced the public key size of k× l matrix of polynomials by having A
generated from some seed ρ using SHAKE-128, the public key is therefore (ρ, t)
and its size is dominated by t. Dilithium further shrinks the bit-representation
size of t by a factor if two at the expense of increasing the signature by 100 bytes.

Also, Dilithium adds a seed to the secret key and use this seed together with
the message to produce the randomness y in Line 03 of signing algorithm.

32

The rest is parameter selections to make digital signing fast and secure: how
to choose matrix A and its polynomial rings Zq[X]/X256 + 1 so that matrix
multiplication can be efficient via Number Theoretic Transform (NTT), which
is a variant of FFT over finite field Zq rather than over complex numbers; how
to choose a prime q so that the group Z∗

q has an element of order 2n = 512,
or equivalently q ∼= 1 (mod 512); how to choose an efficient SHAKE-128 im-
plementation so that time-consuming operation of expanding a seed ρ into the
polynomial matrix A, which is needed for both signing and verification.

We will omit the detailed discussions of choosing parameters in this paper,
rather, we just list 2 set of candidates now and implement one set later.

Table 7.1: Candidates of Dilithium Parameters
NIST Security Level 3 5

q [modulus] 223 − 213 + 1 223 − 213 + 1
d [dropped bits from t] 13 13

τ [# of ± 1′s in c] 49 60

Challenge entropy
[
log

((
256
τ

))]
225 257

γ1[y coefficient range] 219 219

γ2[low order rounding range] (q − 1)/32 (q − 1)/32
(k, l)[dimension of A] (6, 5) (8, 7)
η[secret key range] 4 2

β [τ · η] 196 120
ω [max. # of 1’s in hint h] 55 75

Repetitions 5.1 3.85

The Key Generation, Signing, and Verification algorithms for Dilithium are pre-
sented below. We present the deterministic version of the scheme in which the
randomness used in the signing procedure is generated (using SHAKE-256) as a
deterministic function of the message and a small secret key. Since our signing
procedure may need to be repeated several times until a signature is produced,
we also append a counter in order to make the SHAKE-256 output differ with
each signing attempt of the same message. Also due to the fact that each (pos-
sibly long) message may require several iterations to sign, we compute an initial
digest of the message using a collision-resistant hash function,and use this digest
in place of the message throughout the signing procedure.

33

Algorithm 3 Full Dilithium DSA Algorithm

KeyGen

1: ζ ← {0, 1}256
2: (ρ, ς,K) ∈ {0, 1}256×3 := H(ζ) ▷ H is SHAKE-256
3: (s1, s2) ∈ Sl

η × Sk
η := H(ς)

4: A ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated in NTT representation as Â

5: t := As1 + s2 ▷ Compute As1 as NTT−1 (Â ·NTT (s1))
6: (t0, t1) := Power2Roundq(t, d)
7: tr ∈ {0, 1}384 := CRH(ρ||t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Sign(sk, M)

9: A ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated in NTT representation as Â

10: µ ∈ {0, 1}384 := CRH(tr||M)
11: κ := 0, (z, h) := ⊥
12: ρ

′ ∈ {0, 1}384 := CRH(K||µ) or ρ
′ ← {0, 1}384 for randomized signing

13: while (z, h) = ⊥ do ▷ Pre-compute ŝ1 := NTT (s1), ŝ2 := NTT (s2),
ŝ0 := NTT (s0)

14: y ∈ S̃l
γ1

:= ExpandMark(ρ
′
, κ)

15: w := Ay ▷ w := NTT−1(Â ·NTT (y))
16: w1 := HighBitsq(w, 2γ2)
17: c̃ ∈ {0, 1}256 := H(µ||w1)
18: c ∈ Bτ := SampleInBall(c̃) ▷ Store c in NTT representation as

ĉ = NTT (c)
19: z := y + cs1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
20: r0 := LowBitsq(w − cs2, 2γ2) ▷ Compute cs2 as NTT−1(ĉ · ŝ2)
21: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then
22: (z, h) := ⊥
23: else
24: h := MakeHintq(−ct0, w − cs2 + ct0, 2γ2) ▷ Compute ct0 as

NTT−1(ĉ · t̂0)
25: if ||ct0||∞ ≥ γ2 or (# of 1’s in h ≥ ω) then
26: (z, h) := ⊥
27: end if
28: end if
29: κ := κ + l
30: end while
31: return σ = (z, h, c̃)

Verify(pk,M, σ) = (z, h, ĉ)

32: A ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated in NTT representation as Â

33: µ ∈ {0, 1}384 := CRH(CRH(ρ||t1||M))
34: c := SampleInBall(ĉ)
35: w

′

1 := UseHintq(h, Az - ct1 · 2d, 2γ2) ▷ Compute as

NTT−1(Â ·NTT (z)−NTT (c) ·NTT (t1 · 2d))
36: return [||z||∞ < γ1 − β] and [c̃ = H(µ||w′

1)] and [# of 1’s in h ≤ ω]
34

Above is the pseudo-code for deterministic and randomized versions of Dilithium.
The only difference between the two versions is in Line 12, where ρ

′
is either a

function of the key and message, or is chosen completely at random.

7.1.1 Security Analysis

The best attacks involve finding short vectors in some lattice, which takes expo-
nential steps for quantum and classical computer. The main difference between
the MLWE and MSIS problems is that the MLWE problem involves finding a
short vector in a lattice in which an “unusually short” vector exists. The MSIS
problem, on the other hand, involves just finding a short vector in a random
lattice. In knapsack terminology, the MLWE problem is a low-density knapsack,
while MSIS is a high-density knapsack instance. While the MLWE and MSIS
problems are defined over polynomial rings, we do not currently have any way
of exploiting this ring structure, and therefore the best attacks are mounted
by simply viewing these problems as LWE and SIS problems with the ring Rq

being replaced by Zq.

7.2 Lattice based KEM, Kyber

7.2.1 Module LWE

The construct of module learn with error is to reduce the size of matrix A
and matrix multiplication of LWE (Learn With Error) with the help of NTT
(Number Theory Transform), and add k recursion to RLWE (Ring Learn With
Error) to get the optimized performance and security, whose level can be tuned
with the selection of parameter k.

M-LWE Parameters: q ≥ 0 a modulus, m, k > 0 be integers, χ a distribution
over Z[X]/Xn + 1.

Input: m samples of the form ai, < ai, s > +ei, where: ai ← (Z[X]/Xn + 1)k,
ei ← χ

Challenge: find the secret key s ∈ (Z[X]/Xn + 1)k

The storage size of M-LWE is O(k2n)

The computation complexity is O(k2n log n)

Below is the visualization of LWE, R-LWE, M-LWE.

35

Learn With Error as below, with storage size of O(n2) and computation com-
plexity of O(n2n)

a00 a01 . . . a0n
a10 a11 . . . a1n
...

...
an0 an1 . . . ann

 ·

s0
s1
...
sn

 +

e0
e1
...
en

 =

t0
t1
...
tn

Ring Learn With Error as below, with storage size of O(n) and computation
complexity of O(n log n)

a0,0 −an,0 −an−1,0 . . . −a1,0
a1,0 a0,0 −an,0 . . . −a2,0
a2,0 a1,0 a0,0 . . . −a3,0
a3,0 a2,0 a1,0 . . . −a4,0

...
...

...
...

...
an−1,0 an−2,0 an−3,0 . . . −an,0
an,0 an−1,0 an−2,0 . . . a0,0

·

s0
s1
s2
s3
...

sn−1

sn

+

e0
e1
e2
e3
...

en−1

en

=

t0
t1
t2
t3
...

tn−1

tn

Module Learn With Error as below, with storage size of O(k2n) and computa-
tion complexity of O(k2n log n)

a0,0(X) . . . a0,k(X)
...

...
...

ak,0(X) . . . ak,k(X)

 ·
s0(X)

...
sk(X)

 +

e0(X)
...

ek(X)

 =

t0(X)
...

tk(X)

7.2.2 Kyber explained

With M-LWE explained, we can have a high level view of how KYBER works.

1. Key generation Alice will generate a random matrix A, a secret key s, and
a noise vector (error term) e, both s and e have small coefficients, and
compute:

As + e = t

Alice publish (A, t) as her public key, and keep s as her private key.

36

2. Encryption Bob will use Alice’s public key to encrypt a message to Alice:
First, Bob generates a random vector r.
Next, Bob use the r to multiply A and t (Alice’s public key):

(r1, r2) = r ×A× t

Next, Bob adds two small error terms to r1, r2:

(e1 + r1, e2 + r2)

Next, Bob add his message m to the 2 terms:

(e1 + r1 + 0, e2 + r2 + m)

And send the resulting (u,v) to Alice:

(u, v) = (e1 + r1 + 0, e2 + r2 + m)

3. Decryption Alice use her private key s to decrypt (u, v) to obtain the
message m:

m = v − u× s− et

Other parties has no ability to cancel the small error et due to the hard-
ness of SVP, CVP problems, even with a quantum computer.

We will utilize the KYBER to encrypt the transactions on the blockchain
to achieve privacy.

7.2.3 KYBER Full Algorithm

Below is the full KYBER algorithm we will implement:

37

Algorithm 4 Full KYBER KEM Algorithm

KeyGen

1: d← B32

2: (ρ, σ) := G(d)
3: N := 0
4: for i from 0 to k do ▷ Generate Matrix Â ∈ Rk×k

q in NTT domain

5: for in from 0 to k-1 do Âij := Parse(XOF(p, j, i))
6: end for
7: end for
8: for i from 0 to k-1 do ▷ Sample s ∈ Rk

q from Bη1

9: si := CBDη1(PRF(σ,N))
10: N := N + 1
11: end for
12: for j from 0 to k-1 do ▷ Sample e ∈ Rk

q from Bη1

13: ei := CBDη1
(PRF(σ,N))

14: N := N + 1
15: end for
16: ŝ := NTT(s)
17: ê := NTT(e)
18: t̂ = Â · ŝ + ê
19: pk := (Encode12(t̂ mod+ q)||ρ))
20: sk := Encode12(ŝ mod+ q)

Encrypt(pk,m, r)
21: N := 0
22: t̂ := Decode12(pk)
23: ρ := pk + 12 · k · n/8
24: for i from 0 to k-1 do ▷ Generate matrix Â ∈ Rk×k

q in NTT domain

25: for j from 0 to k-1 do Âij := Parse(XOF(ρ, j, i))
26: end for
27: end for
28: for i from 0 to k-1 do ▷ Sample r ∈ Rk

q from Bη1

29: ri := CBDη1
(PRF(σ,N))

30: N := N + 1
31: end for
32: for i from 0 to k-1 do ▷ Sample e1 ∈ Rk

q from Bη2

33: e1i := CBDη2
(PRF(σ,N))

34: N := N + 1
35: end for
36: e2 := CBDη2

(PRF(r,N)) ▷ Sample e2 ∈ Rk
q from Bη2

37: r̂ := NTT(r)
38: u := NTT−1(ÂT · r̂) + e1 ▷ u := AT · r + e1
39: v := NTT−1(t̂T · r̂) + e2 + Decompressq(Decodea(m), 1) ▷ v := tT · r + e2

+ Decompressq(m, 1)

38

40: c1 := Encodedu(Compress(u, du))
41: c2 := Encodedv (Compress(v, dv))
42: return c = (c1||c2) ▷ c := (Compress(u, du), Compress(v, dv))

Decrypt(sk, c)
43: u := Decompressq(Decodedu

(c), du)
44: v := Decompressq(Decodedv (c + du · k · n/8), dv)
45: ŝ := Decode12(sk)
46: m := Encode1(Compressq(v −NTT−1(ŝT ·NTT (u)), 1))
47: return m

7.3 FHE

7.3.1 LWE

We introduced LWE in the previous section. The LWE problem revolves around
the difficulty of distinguishing random linear equations from noisy versions
thereof, forming the basis of various cryptographic primitives. This problem
has gained prominence due to its resilience against quantum attacks, offering
a robust foundation for post-quantum cryptographic schemes. Researchers are
actively exploring lattice-based constructions, leveraging the hardness of LWE,
to design secure and efficient cryptographic protocols.

Key A ∈ Zq[n×m]

LWEA(s, e) = As + e(mod q)

emax ≤ β = O(
√

(n))

q,m = poly(n)

7.3.2 Encryption Decryption with LWE

The concept of encryption with Learning With Errors (LWE) at its core revolves
around leveraging the assumed hardness of the LWE problem to establish se-
cure communication channels. In an LWE-based encryption scheme, the public
key consists of random linear equations, while the private key involves the un-
derlying secrets that satisfy these equations. The encryption process involves
introducing random noise to the linear equations, creating a set of noisy equa-
tions that conceal the original secrets. The recipient, possessing the knowledge
of the secrets, can then decrypt the message by effectively solving the system of
equations and eliminating the noise.

The security of LWE-based encryption relies on the presumed computational
difficulty of distinguishing between the original linear equations and the noisy

39

versions. This hardness assumption forms the foundation for the confidentiality
of the encrypted messages. Importantly, LWE-based encryption schemes are
known for their resilience against quantum attacks, presenting a viable alterna-
tive in the post-quantum cryptographic landscape.

One time pad:
b = LWEA(s, e)

Secret key:
s ∈ Zn

q

Message
m ∈ Zm

For encryption, generate a random pair:

[A, e]

Es(m; [A, e]) = [A, b + M]

where
b = As + e

Decryption is noisy:

Ds(A, b + m) = (b + m)−As = m + e mod q

When decrypting a ciphertext encrypted under an LWE-based scheme, the low-
order bit of the intended message ”m” becomes entangled with a noise term ”e.”
This inherent noise complicates the accurate recovery of the original message,
necessitating a careful mitigation strategy.

To address this issue, a common approach involves scaling up the entire message
”m” and subsequently rounding off the low-order bits, which encapsulate the
error term. This scaling-up operation effectively diminishes the influence of
the noise term, allowing for a more accurate recovery of the intended message.
The rounding process serves to isolate and discard the perturbed low-order bits,
rectifying the impact of the error term on the decrypted result.

7.3.3 Circular Security

Circular security in Fully Homomorphic Encryption (FHE) represents a desir-
able property, allowing for the decryption of an encrypted private key to derive
an encrypted form of the plaintext while maintaining security. This concept
addresses the circularity problem inherent in FHE schemes, ensuring that op-
erations involving encrypted keys do not compromise the overall security of the

40

encryption system. In essence, circular security facilitates secure and privacy-
preserving computations, permitting users to perform operations on their en-
crypted data, including their own encrypted private keys, without compromising
the confidentiality of the information.

Es(m; [A, e]) = [A, b + M]

where
b = As + e

Ds(A, b + m) = (b + m)−As = m + e mod q

Ds([−A, 0]) = 0 + As

We can use the property to randomly encrypt the secret key.

[−A, 0] + Es(0, β) = Es(As, β)

E(As) does not leak s

Decryption is also linear, this linearity gives us the basic homomorphic opera-
tions:

Add: E(m1, β1) + E(m2, β2) ⊂ E(m1 + m2, β1 + β2)

Neg: −E(m,β) = E(−m,β)

Mul: c× E(m,β) = E(c×m, c× β)

Const: [O,m] ∈ E(m,O)

Key: [−A, 0] ∈ E(As, 0)

We can perform a limited number of additions and multiplications by small
constants. Decryption is linear in the secret key s

′
= (−s, 1)

41

7.3.4 Public Key Encryption

In Fully Homomorphic Encryption (FHE), the public key encryption aspect al-
lows for the encryption of data using both the secret key and the public key.
Typically, public key encryption in FHE involves two main operations: encryp-
tion and decryption.

Encryption: Users can encrypt plaintext data using the public key. This cipher-
text, generated with the public key, can then be processed using FHE operations
without the need for decryption.

Decryption: The encrypted data can be decrypted using the corresponding se-
cret key, revealing the original plaintext. This step ensures that only those with
the secret key can retrieve meaningful information from the encrypted data.

The ability to use the public key for encryption is particularly advantageous in
scenarios where data needs to be securely transmitted to a party that possesses
the secret key. This dual-key functionality enhances the flexibility and utility of
FHE in various applications, offering a secure means of performing computations
on encrypted data without compromising the confidentiality of the information.

Public key:
[a1, b1] = Es(0), ..., [an, bn] = Es(0)]

Encrypt(m):

(
∑
i

ri × [ai, bi + (0,m) + Es(m, 0) = Es(m)])

We can use a party’s public key to encrypt, and the party can use its decryption
key to decrypt.

Also, we can use homomorphic decryption to do multiplication, now that en-
cryption is linearly homomorphic:

E(m) = (a, as + e + m)

D(a, b) = b− as = m + e

42

Decryption is linear in s′ = (−s, 1), we can decrypt homomorphically using an
encryption of s′ . Given:

E(m) = (a, b), E
′
(s

′
= (E

′
(−s), E

′
(1)))

We can compute:

E(m) ⋆ E
′
(s

′
) = a ⋆ E

′
(−s) + b ⋆ E

′
(1) = E(m)

Furthermore, given E(m) and E
′
(cs

′
)

We can compute E(m) ⋆ E
′
(cs

′
) = E(cm)

7.3.5 Bootstrapping FHE

Bootstrapping in Fully Homomorphic Encryption (FHE) is a critical process
that addresses a fundamental challenge known as ”noise accumulation.” The
core idea revolves around refreshing or ”bootstrapping” an encrypted ciphertext
to reduce the noise level, allowing for continued secure computations without
compromising the integrity of the encrypted data.

In FHE schemes, performing homomorphic operations on encrypted data in-
troduces noise, which accumulates with each computation. As the noise level
increases, it can eventually reach a point where accurate decryption becomes
challenging, potentially leading to errors in the computed results. Bootstrap-
ping is essential to counteract this noise growth and maintain the security and
correctness of FHE computations.

The process involves decrypting an encrypted ciphertext using the secret key
and then re-encrypting the result using the same FHE scheme but with fresh
noise. This effectively ”refreshes” the ciphertext, reducing the accumulated
noise and allowing for continued secure computations. Bootstrapping is partic-
ularly crucial in scenarios where long sequences of homomorphic operations are
required, ensuring that the noise remains manageable and does not compromise
the security guarantees of the FHE system.

The bootstrapping process works as the followings:

43

Let c = Enc(m ⋆ (q/2) + e)

fS = msb(DecS(c)) ⋆ (q/2) = m ⋆ (q/2)

Evaluate fc homomorphically on S = Encs(S)

fc(S) = fc(S) = msb(Decs(c)) = m ⋆ (q/2) = Encs(m ⋆ (q/2))

After the process we derive an output with a noise level of msb(Decs(c)), but
not on e, therefore we ”refresh” the noise to a low base level.

7.3.6 FHE Summary

As explained above, encryption process encompasses several key principles, each
contributing to the robustness and versatility of secure computations on en-
crypted data.

Circular security, as a foundational concept in Fully Homomorphic Encryption
(FHE) and lattice cryptography, is designed to prevent the revelation of informa-
tion about the original secret key when encrypting it using the secret key itself.
While circular security lacks theoretical proof, empirical evidence suggests its ef-
fectiveness in bolstering the system against potential vulnerabilities arising from
self-referential cryptographic operations. Despite the absence of formal proof,
the robustness of circular security remains evident in practice, contributing to
the overall resilience of FHE systems in real-world cryptographic scenarios.

Next, linear decryption characterizes the process of decrypting linearly en-
crypted data. This linear nature facilitates the secure and efficient execution of
operations on encrypted data, forming a foundational aspect of FHE computa-
tions.

A transformative step involves converting an encryption E to E’, where E’ pos-
sesses the capability to evaluate arbitrary low-depth functions. This transfor-
mation enhances the expressive power of FHE, enabling the computation of
diverse functions on encrypted data while maintaining security.

Introducing bootstrapping further extends the FHE capabilities. While boot-
strapping allows for non-linear, low-depth functions, its primary role lies in mit-
igating noise accumulation. By refreshing the ciphertext using a transformed
encryption E’, bootstrapping effectively reduces noise levels, ensuring the sus-

44

tained security and accuracy of FHE computations over extended sequences.

In summary, the FHE encryption process encompasses circular security, linear
decryption, transformation to E’ for evaluating low-depth functions, and the cru-
cial role of bootstrapping in both handling non-linear functions and maintaining
low noise levels. These principles collectively underscore the sophistication and
resilience of FHE in enabling secure computations on encrypted data within the
lattice cryptography framework.

45

Bibliography

[1] Peter Shor Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer 1995.08.30.
Shor 1995

[2] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, Marko Vukolić
Mir-BFT: High-Throughput Robust BFT for Decentralized Networks
2019.06.13
Stathakopoulou 2019

[3] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachene TFHE:
Fast Fully Homomorphic Encryption Over the Torus 2019
Chillotti 2019

[4] Leo Ducas,Daniele Micciancio FHEW: Bootstrapping Homomorphic Encryp-
tion in Less Than a Second 2015
Ducas,Micciancio 2015

[5] Jung Hee Cheon, Andrey Kim, Miran Kim, Yongsoo Song Homomorphic
Encryption for Arithmetic of Approximate Numbers 2017
Cheon, Kim, Kim, Song 2017

[6] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seilor Practical Lattice-
Based Zero-Knowledge Proofs for Integer Relations 2020
Lyubashevsky, Nguyen, Seilor 2020

[7] Vadim Lyubashevsky, Ngoc Khanh Nguyen BLOOM: Bimodal Lattice One-
Out-of-Many Proofs and Applications 2022
Lyubashevsky, Nguyen 2022

46

https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/1906.05552
https://link.springer.com/article/10.1007/s00145-019-09319-x
https://link.springer.com/chapter/10.1007/978-3-662-46800-5_24
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2020/1183.pdf
https://eprint.iacr.org/2022/1307.pdf

	Cryptography and Quantum Computing
	Quantum computer breaks ECC
	Cryptocurrency May Be Broken Now
	Post Quantum Cryptography
	Lattice Cryptography
	Intro to PQC
	Lattice DSA
	Lattice KEM
	FHE

	A Math Primer of Lattice, SVP, CVP

	High Throughput Blockchain
	Blockchain is Slow, Low Throughput
	High Speed, High Throughput Blockchain
	Network Assumptions
	MIR BFT Consensus Protocol

	FHE Virtual Machine
	FHEVM
	FHEVM vs ZKVM
	FHEVM Design

	Transaction Privacy
	The Problem of Pseudo Anonymity
	Compliance
	Our Approach to Privacy

	Blockchain Design Considerations
	Block Reward
	Transaction fee
	Storage model

	ecosystem
	Mathematics and Algorithms
	Lattice based DSA, Dilithium
	Security Analysis

	Lattice based KEM, Kyber
	Module LWE
	Kyber explained
	KYBER Full Algorithm

	FHE
	LWE
	Encryption Decryption with LWE
	Circular Security
	Public Key Encryption
	Bootstrapping FHE
	FHE Summary

